X hits on this document

PDF document

Internal Accession Date Only - page 14 / 18





14 / 18


[1] R. L. Adler. The torus and the disk. Contemporary Mathematics, 135, 1992.

[2] R. L. Adler and B. Marcus. Topological entropy and equivalence of dynamical systems. Memoirs of the AMS, 219, 1979.

[3] R. Alicki and M. Fannes. Defining quantum dynamical entropy. Letters in Mathematical Physics, 32:75-82, 1994.

[4] R. Alicki and H. Narnhofer. Comparison of dynamical entropies for the noncommutative shifts. Letters in Mathematical Physics, 33:241-247, 1995.

[5] J. J. Ashley, B. H. Marcus, and R. M. Roth. Construction of encoders with small decoding look-ahead for input-constrained channels. IEEE Transactions on Information Theory, 41:55-76, 1995.

[6] J. J. Atick. Could information theory provide an ecological theory of sensory processsing. Network, 3:213-251, 1992.

[7] C. H. Bennett. Demons, engines and the second law. Scientific American, pages 88-96, November 1987.

[8] C. H. Bennett. Notes on the history of reversible computation. IBM Journal of Research and Development, 32:16-22, 1988.

[9] C. H. Bennett and R. Landauer. The fundamental physical limits of computation. Scien tific American, pages 38-46, July 1985.

[10] J. Besag and P. J. Green. Spatial statistics and Bayesian computation. Journal of the Royal Statistical Society, 55:25-37, 1993.

[11] W. Bialek, F. Rieke, R. de Ruyter van Steveninck, and D. Warland. Reading a neural code. Science, 252:1854-1857, 1991.

[12] D. R. Brooks, J. Collier, B. A. Maurer, J. D. H. Smith, and E. O. Wiley. Entropy and information in evolving biological systems. Biology and Philosophy, 4:407-432, 1989.

[13] D. R. Brooks, P. H. Leblond, and D. D. Cumming. Information and entropy in a simple evolution model. Journal of Theoretical Biology, 109:77-93, 1984.

[14] N. BruneI, J.-P. Nadal, and G. Toulouse. Information capacity of a perceptron. Journal of Physics A, 25:5017-5037, 1992.

[15] J. A. Bucklew, editor. Large Deviation Techniques in Decision, Simulation and Estima tion. Series in Probability and Mathematical Statistics. John Wiley and Sons, 1990.

[16] C. Campbell and A. Robinson. On the storage capacity of neural networks with sign constrained weights. Journal of Physics A, 24:93-95, 1991.

[17] G. J. Chaitin. On the length of the programs for computing finite binary sequences. Journal of the Association for the Computing Machinery, 13:547-569, 1966.

Document info
Document views16
Page views16
Page last viewedFri Oct 21 23:47:11 UTC 2016