X hits on this document

34 views

0 shares

0 downloads

0 comments

8 / 8

[15] J.F.Bard and J. E. Falk. An explicit solution to multi-level programming problem. Computers and Operations Reseatch. 9, 77-100 (1982)

[16] J.F.Bard and J.T.Moore. A branch and bound algorithm for the bilevel programming prob- lem.SIAM Journey on Scienti c and Statistical Computing. 11, 281-292 (1990)

[17] D.J.White and G.Anandalingam. A penalty function approach for solving bilevel linear pro- grams. Journal of Global Optimization. 3(4), 397-419 (1993)

[18] E.Aiyoshi and K.Shimizu. A new computational method for Stackelberg and min-max problem by use of a penalty method.IEEE Transactions on Automatic Control. 26(2),460-466 (1981)

[19] E.Aiyoshi and K.Shimizu. A solution method for the static constrained Stackelberg problem via penalty method.IEEE Transactions on Automatic Control. 29(12), 1111-1114 (1984)

[20] B.Liu. Stackelberg-Nash equilibrium for multilevel programming with multiple follows using genetic algorithms. Computers Math.Applic.. 36(7),79-89. (1998)

[21] R.Mathieu,L.Pittard and G.Anandalingam. Genetic algorithm based approach to bilevel lin- ear programming.R.A.I.R.O.Recherche Operationelle. 28, 1-21 (1994)

[22] J.F.Bard. Geometric and algorithmic developments for a hierarchical planning problem. Com- puters and Operational Reseatch. 19, 372-383 (1985)

[23] Z. Michalewicz. Genetic Algorithms + Data Structures=Evolution Programs, Springer- erlag, New York. (1996)

[24] G.Anandalingam and D.J.White. A solution for the linear static Stackelberg problem using penalty function. IEEE Transactions Automatic Control. 35, 1170-1173 (1990)

8

Document info
Document views34
Page views34
Page last viewedWed Nov 30 17:44:46 UTC 2016
Pages8
Paragraphs277
Words2943

Comments