X hits on this document

134 views

0 shares

0 downloads

0 comments

36 / 48

Due to assumption 1(ii) the integrand is negative. Notice: Since the integrand of the first

o r d e r c o n d i t i o n i s c o n t i n u o u s a t θ c F B

(equals zero), the derivative with respect to this lower

limit drops out according to Leibnitz rule.

Proof of Lemma 5 Preliminaries: Properties of the Spot–market Equilibrium

In order to proof lemma 5, we need to precisely characterize the Cournot-spot market equilibrium and it’s reaction to changed investment of firms. In section 5 we characterized the spot market equilibrium somehow unusually without explicitly making use of marginal c o s t f u n c t i o n s C j q ( q ) b u t o n l y i n t e r m s o f t h e i n v e s t m e n t s x j ( c ) m a d e b y e a c h fi r m . O n throughout appendix 8 we will make use of the usual notation in terms of marginal cost l y C j q ( q ) , a s a l r e a d y e m p h a s i z e d m a r g i n a l c o s t C j q ( q ) a r e j u s t t h e i n v e r s e o f t h e i n v e s t m e n t

f u n c t i o n x j ( c ) . F o r q 0 = x j ( c 0 ) w e o b t a i n t h u s t h e w e l l k n o w n r e l a t i o n s h i p : x 0 j ( c 0 ) =

C j q 1 q ( q 0 )

.

(i) Properties of the spot market equilibrium For xed θ:

Derive the reaction of the spot market equilibrium for fixed values θ to a change in investment level of firm i at some specific marginal cost c (denoted by dx(c)). The spot m a r k e t e q u i l i b r i u m f o r g i v e n m a r g i n a l c o s t f u n c t i o n s C j q ( q j ) , f o r j = 1 , . . . , n i s c h a r a c t e r i by the usual equilibrium conditions for an asymmetric Cournot-equilibrium: z e d

P (QEQ

q , θ) + P (QEQ

j EQ , θ)q

P (QEQ

q , θ) + P (QEQ

i EQ , θ)q

j: i:

x c i )

)

= C j q ( q E Q j = C i q ( q E Q i

(25)

T h u s i n v e s t m e n t o f t h e a m o u n t x c i w i l l a l l o w fi r m i t o p r o d u c e n o t a t C i q ( q ) b u t a t l o w e r

m a r g i n a l c o s t g i v e n b y C i q ( q

x c i ) ( w h e r e x c i i s s m a l l , w i t h x c i & 0 ) . D i ff e r e n t i a t i o n o f

expression (25) with respect to dx(c)

yields:37

j: i:

( P q ( Q , θ ) + P q q ( Q , θ ) q j ) ( P q ( Q , θ ) + P q q ( Q , θ ) q i )

dQ

c) dx dQ

dx

c)

+ P q ( Q , θ ) d q j + P q ( Q , θ dx ) d q i d c) x c)

= C j q q ( q j ) d q j = C i q q ( q i dx ) d q i d c) x c)

C i q q ( q i )

Solving fo function, and

r

dx dx d q i d q c) j c)

, the reaction of spot market output of firm i to it’s change in the cost the reaction of spot market output of the other firms j:

j:

dq dx

j c)

=

i:

dq dx

i c)

=

³ ³ P q ( Q , ) + P q q ( Q , ) q j C j q q ( q j ) P q ( Q , ) ´ ( P q ( Q , ) + P q q ( Q , ) q i ) C i q q ( q i ) P q ( Q , )

dQ dx c)

´

dQ dx c)

+

C i q q ( q i ) C i q q ( q i ) P q ( Q , )

37From here on we drop the superscript to equilibrium outputs of stage 2.

EQ, in order to save notation. In what follows we always refer

36

Document info
Document views134
Page views134
Page last viewedFri Oct 28 16:21:56 UTC 2016
Pages48
Paragraphs2271
Words25830

Comments