X hits on this document

PDF document

Technology Diffusion, Services, and - page 42 / 49

177 views

0 shares

0 downloads

0 comments

42 / 49

  • -

    41 -

APPENDIX

(64)

) ( ) [ ] 1 4 1 1 1 1 4 1 1 1 1 1 1 1 1 4 1 3 * 1 1 0 1 4 1 1 1 4 1 3 * 1 1 2 1 0 1 4 * 1 1 1 0 1 1 4 0 1 1 3 1 0 +γ * 1 1 / / * l o 1sm 2 g / * l o g l o g l o g l o g l o g + + + + + + + + + + + = s m s 1 m s m s h s h s h y s m m S s m s m s m s m s h S h s h s h s h s h s h I C T S T R T I C T S T R T T L K Y α α γ α α γ α µ γ µ γ γ γ α γ µ γ γ γ γ α α α α α

×

( 6 5 ) h S * 1 l o g γ =

1sh 0

+γ

1sh 1

Y * 1 l o g γ +

1sh 2

T * 1 l o g γ +

1sh 3

log STR1 +γ

1sh 4

s h S h I C T 1 1 * 1 / l o g γ µ

(65’) log S

* m1

=γ

1sm 0

+γ

1sm 1

Y * 1 l o g γ +

1sm 2

T * 1 l o g γ +

1sm 3

logSTR1 +γ

1sm 4

s m S m I C T 1 1 * 1 / l o g γ µ

The solution for initial levels of patents is rather complex as it depends also on the initial level of technology which, in turn, depends on the aggregation of initial level of patents (eqs. (46)- (48)). A complication lies in the fact that we find a solution in logs of variables which depends on the sum of the variables themselves. However, although numerical solutions are always possible, we need a closed form solution to be used for economic analysis (an appealing application is comparative dynamics). To find this we need the sum of the patents flows:

(66)

[ [ 3 1 3 3 1 3 log Pat 3 * 1 3 3 1 3 5 1 1sm 0 * i1 1sh 0 2 1 1 0 l o i1 g i1 l o g i1 l o g γ s m γ 1sm 1 1sh 1 i1 s m s m i s m i1 s h s i1 h s h i s h i i T F A T F A H K a d i s t β β β γ β β β β γ β β β β β * + + 0 1 i1 + + + i1 + + + + + γ γ 1sh 2 i1 = 1sm 2

3 log HKR * 1 l o g s h 0 1 i1 T β

µSs1 /γ 1sh

]+

3 * 1 l o g s m i1 T β

µ Sm1

/γ 1sm

]+

1 1 1 4 * 1 1 4 / l o g i p i i A T F β µ β β +

) [ 1 1 1 4 1 3 1 0 1 4 1 3 0 1 1 4 0 1 1sh 0 1 3 1 0 1 /γ 1sh / * l 1 4 Sh o g l o g + + + + + + + y s m s γ m 1 s m S h s h S T R I C T S 1sm A T R = ICT * µ Sm1 L K γ α µ γ γ γ µ α γ γ 4 Sm 1sh α α α α ]1 1sh 1 α 1Sm 1 sh 4 1sm 1 1 4 sm α α γ α

/ γ 1sh

) +

F

=

(α

1 1

+α

1 4 sh

γ 1shγ

1sh 2

+α

1 4 sm

γ 1smγ

1 2 sm

)(1 γ

1sh 1

α 1shα

1 sh 4

γ

1sm 1

α 1Sm

α

1 4 sm

)1

(67)

[ ] [ ] { } * 1 1 4 1 3 1 3 1 3 1 3 1 1 4 1 1 3 1 1 1 3 1 0 1 3 1 1 3 1 3 1 3 0 1 1 5 0 1 1 i1 2 1 1 1 1 0 * 1 l o g ) ( 1sh 2 0 e x p / 1sh l o g l o g e x p T F F F A A A H K R H K a d i s t P a t i i s m i s m i s h 1 i s h i 1sh p S m i s m s m i s m s m i s m S s i s h i s h i s h i i i i i i β γ β β γ β β β µ β µ β γ β 1sm 2 γ β µ β γ β γ β β β β β + + + + + + + + + + + + =

Document info
Document views177
Page views177
Page last viewedThu Jan 19 20:05:15 UTC 2017
Pages49
Paragraphs1564
Words15476

Comments