X hits on this document





11 / 12


Familial hypercholesterolemia: genetic diagnosis

58. Koivisto UM, Palvimo JJ, Jänne OA, Kontula K. A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hyper- cholesterolemia. Proc Natl Acad Sci U S A. 1994;91:10526–10530. 59. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1: 445–466. 60. Esser V, Limbird LE, Brown MS, Goldstein JL, Russell DW. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem. 1988;263:13282–13290. 61. Russell DW, Brown MJ, Goldstein JL. Different combina- tions of cysteine-rich repeats mediated binding of low-density lipoprotein receptor to two different proteins. J Biol Chem. 1989;264:21682–21688. 62. Fisher C, Abdul-Aziz D, Blacklow SC. A two-modulate region of the low-density lipoprotein receptor sufficient for forma- tion of complexes with apolipoprotein E ligands. Biochemistry. 2004;43:1037–1044. 63. Arias-Moreno X, Velázquez-Campoy A, Rodríguez JC, Pocoví M, Sánchez J. Mechanism of low density lipoprotein (LDL) release in the Endosome. J Biol Chem. 2008;283:22670–22679. 64. Brown MS, Herz J, Goldstein JL. Calcium cages, acid baths and recycling receptors. Nature. 1997;388:629–630. 65. Zhang DW, LagaceTA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282:20502–20512. 66. Davis CG, Elhammer A, Russell DW, et al. Deletion of clustered O-linked carbohydrates does not impair function of low density lipo- protein receptor in transfected fibroblasts. J Biol Chem. 1986;261: 2828–2838. 67. Yokode M, Pathak RK, Hammer RE, Brown MS, Goldstein JL, Anderson RG. Cytoplasmic sequence required for basolateral targeting of LDL receptor in livers of transgenic mice. J Cell Biol. 1992;117: 39–46. 68. Hobbs HH, Leitersdorf E, Goldstein JL, Brown MS, Russel DW. Multiple crm-mutations in familial hypercholesterolemia. Evidence for 13 alleles, including four deletions. J Clin Invest. 1988;81:909–917. 69. Yamamoto T, Davis CG, Brown MS, et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984;39:27–38. 70. Lehrman MA, Schnedier WJ, Südhof TC, Brown MS, Goldstein JL, Russell DW. Mutation in LDL receptor:Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985;227:140–146. 71. Gudnason V, King-Underwood L, Seed M, Sun XM, Soutar AK, Humphries SE. Identification of recurrent and novel mutations in exon 4 of the LDL receptor gene in patients with familial hypercho- lesterolemia in the United Kingdom. Arterioscler Thromb. 1993;13: 56–63. 72. Kotze MJ, De Villiers WJ, Steyn K, et al. Phenotypic variation among familial hypercholesterolemics heterozygous for either one of two Afrikaner founder LDL receptor mutations. Arterioscler Thromb. 1993;13:1460–1468. 73. Sun XM, Webb JC, Gudnason V, et al. Characterization of deletions in the LDL receptor gene in patients with familial hypercholesterolemia in the United Kingdom. Arterioscler Thromb. 1992;12:762–770. 74. Leitersdorf E, Eisenberg S, Eliav O, et al. Genetic determinants of responsiveness to the HMG-CoA reductase inhibitor fluvastatin in patients with molecularly defined heterozygous familial hypercho- lesterolemia. Circulation. 1993;87:III35–III44. 75. Jeenah M, September W, Graadt van Roggen F, de Villiers W, Seftel H, Marais D. Influence of specific mutations at the LDL-receptor gene locus on the response to simvastatin therapy in Afrikaner patients with heterozygous familial hypercholesterolaemia. Atherosclerosis. 1993;98:51–58.

76. Junyent M, Gilabert R, Jarauta E, et al. Impact of low-density lipo- protein receptor mutational class on carotid atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis. 2010;208: 437–441. 77. Vega GL, Grundy SM. In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia. J Clin Invest. 1986;78:1410–1414. 78. Innerarity TL, Weisgraber KH, Arnold KS, et al. Familial defective apoilpoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci U S A. 1987;84:6919–6923. 79. Soria LF, Luewig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apoipoprotein B-100. Proc Natl Acad Sci U S A. 198;86:587–591. 80. Gaffney D, Reid JM, Cameron I, et al. Independent mutations at codon 3500 of theApolipoprotein B gene are associated with hyperlipidemia. Arterioscler Thromb asc Biol. 1995;15:1025–1029. 81. Pullinger CR, Hennessy LK, Chatterton JE, et al. Familial ligand defec- tive apolipoprotein B: identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest. 1995;95:1225–1234. 82. Rauh G, Keller C, Schuster H, Wolfran G, Zollner N. Familial defective apoilpoprotein B-100: a common cause of primary hypercholester- olemia. Clin Invest. 1992;70:77–84. 83. Soufi M, Sattler AM, Maerz W, et al. A new but frequent mutation of APOB-100-APOB His3543Tyr. Atherosclerosis. 2004;174:11–16. 84. Fouchier SW, Kastelein JJ, Defesche JC. Update of the molecular basis of familial hypercholesterolemia in the Netherlands. Hum Mutat. 2005;26:550–556. 85. Fouchier SW, Kastelein JJ, Sijbrands EJ. Familial defective apolipo- protein B versus familial hypercholesterolemia: an assessment of risk. Semin asc Med. 2004;4:259–264. 86. Schaefer JR, Scharnegl H, Baumstark MW, et al. Homozygous familial defective apolipoprotein B-100. Enhanced removal of apolipoprotein E-containing VLDLs and decreased production of LDLs. Arterio Thromb asc Biol. 1997;17:348–353. 87. Varret M, Rabès JP, Saint-Jore B, et al. A third major locus for auto- somal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet. 199;64:1378–1387. 88. Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34: 154–156. 89. Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accel- erates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci U S A. 2005;102:2069–2074. 90. Peterson AS, Fong LG, Young SG. Commentary: PCSK9 function and physiology. J Lipid Res. 2008;49:1595–1599. 91. Sawamura T. New Idol for cholesterol reduction? Clin Chem. 2009;55: 2082–2084. 92. Cameron J, Holla ØL, Ranheim T, Kulseth MA, Berge KE, Leren TP. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum Mol Genet. 2006;15:1551–1558. 93. Cunningham D, Danley DE, Geoghegan KF, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14:413–419. 94. Pandit S, Wisniewski D, Santoro JC, et al. Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. J Lipid Res. 2008;49:1333–1343. 95. Cohen J, Pertsemlidis A, Kotowski, IK, Graham R, Garcia C, Hobbs H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 25;37:161–165. 96. Cohen JC, boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence varia- tions in PCSK9, low LDL, and protection against coronary heart dis- ease. N Engl J Med. 2006;354:1264–1272. 97. Descamps OS, Leysen X,Van Leuven F, Heller FR.The use ofAchilles tendon ultrasonography for the diagnosis of familial hypercholester- olemia. Atherosclerosis. 2001;157:514–518.

The Application of Clinical Genetics 2010:3

submit your manuscript | www.dovepress.com Dovepress


Document info
Document views55
Page views56
Page last viewedWed Jan 18 04:52:13 UTC 2017