X hits on this document

PDF document






18 / 20


Neuropsychopharmacology: The Fifth Generation of Progress

familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat Genet 1996;12:81–84.

  • 132.

    Lanau F, Zenner M, Civelli O, et al. Epinephrine and norepi- nephrine act as potent agonists at the recombinant human dopa- mine D4 receptor. J Neurochem 1997;68:804–812.

  • 133.

    Rubinstein M, Phillips TJ, Bunzow JR, et al. Mice lacking dopa- mine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 1997;90:991–1001.

  • 134.

    Dulawa SC, Grandy DK, Low MJ, et al. Dopamine D4 recep- tor-knock-out mice exhibit reduced exploration of novel stimuli. J Neurosci 1999;19:9550–9556.

  • 135.

    Cook EH, Stein MA, Krasowski MD, et al. Association of atten- tion deficit disorder and the dopamine transporter gene. Am J Med Genet 1995;56:993–998.

  • 136.

    Gill M, Daly G, Heron S, et al. Confirmation of assocation between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 1997;2:311–313.

  • 137.

    Waldman ID, Rowe DC, AbramowitzA, et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diag- nostic subtype and severity. Am J Med Genet 1998;63: 1767–1776.

  • 138.

    Poulton K, Holmes J, Hever T, et al. A molecular genetic study of hyperkinetic disorder/attention deficit hyperactivity disorder. Am J Med Genet 1998;81:458.

  • 139.

    Winsberg BG, Comings DE. Association of the dopamine trans- porter gene (DAT1) with poor methylphenidate response [see Comments]. J Am Acad Child Adolesc Psychiatry 1999;38: 1474–1477.

  • 140.

    Giros B, Jaber M, Jones SR, et al. Hyperlocomotion and indif- ference to cocaine and amphetamine in mice lacking the dopa- mine transporter. Nature 1996;379:606–612.

  • 141.

    Gainetdinov RR, Jones SR, Fumagalli F, et al. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 1998;26:148–153.

  • 142.

    Jaber M, Dumartin B, Sagne C, et al. Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci 1999;11:3499–3511.

  • 143.

    Jones SR, Gainetdinov RR, Hu XT, et al. Loss of autoreceptor functions in mice lacking the dopamine transporter. Natl Neu- rosci 1999;2:649–655.

  • 144.

    Bezard E, Gross CE, Fournier MC, et al. Absence of MPTP- induced neuronal death in mice lacking the dopamine trans- porter. Exp Neurol 1999;155:268–273.

  • 145.

    Gainetdinov RR, Fumagalli F, Jones SR, et al. Dopamine trans- porter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 1997;69: 1322–1325.

  • 146.

    Comings DE, Comings BG, Muhleman D, et al. The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disor- ders. JAMA 1991;266:1793–1800.

  • 147.

    Baik JH, Picetti R, Saiardi A, et al. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 1995;377:424–428.

  • 148.

    Kelly MA, Rubinstein M, Phillips TJ, et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 1998;18:3470–3479.

  • 149.

    Dickinson SD, Sabeti J, Larson GA, et al. Dopamine D2 recep- tor-deficient mice exhibit decreased dopamine transporter func- tion but no changes in dopamine release in dorsal striatum. J Neurochem 1999;72:148–156.

  • 150.

    Calabresi P, Saiardi A, Pisani A, et al. Abnormal synaptic plastic- ity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 1997;17:4536–4544.

  • 151.

    Barr CL, Wigg KG, Wu J, et al. Linkage study of two polymor-

phisms at the dopamine D3 receptor gene and attention-deficit hyperactivity disorder. Am J Med Genet 2000;96:114–117.

  • 152.

    Accili D, Fishburn CS, Drago J, et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 1996;93:1945–1949.

  • 153.

    Eisenberg J, Mei-Tal G, Steinberg A, et al. Haplotype relative risk study of catechol-O-methyltransferase (COMT) and atten- tion deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive-hyperac- tive phenotype. Am J Med Genet 1999;88:497–502.

  • 154.

    Hawi Z, Millar N, Daly G, et al. No association between cate- chol-O-methyltransferase (COMT) gene polymorphism and at- tention deficit hyperactivity disorder (ADHD) in an Irish sam- ple. Am J Med Genet 2000;96:282–284.

  • 155.

    Tahir E, Curran S, Yazgan Y, et al. No association between low and high activity catecholamine-methyl-transferase (COMT) and attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Am J Med Genet 2000;96:285–288.

  • 156.

    Barr CL, Wigg K, Malone M, et al. Linkage study of catechol- O-methyltransferase and attention-deficit hyperactivity disor- der. Am J Med Genet 1999;88:710–713.

  • 157.

    Jiang S, Xin R, Wu X, et al. Association between attention deficit disorder and the DXS7 locus. Am J Med Genet 2000; 96:289–292.

  • 158.

    Comings D, Gade-Andavolu R, Gonzalez N, et al. Additive effect of three noradenergic genes (ADRA2A, ADRA2C, DBH) on attention-defecit hyperactivity disorder and learning disabili- ties an Tourette syndrome subjects. Clin Genet 1999;55: 160–172.

  • 159.

    Comings D, Gade R, Muhleman D, et al. No association of a tyrosine hydroxylase gene tetranucleotide repeat polymorphism in autism, Tourette syndrome, or ADHD. Biol Psychiatry 1995; 37:484–486.

  • 160.

    Wilson MC. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neu- rosci Biobehav Rev 2000;24:51–57.

  • 161.

    Hess EJ, Jinnah HA, Kozak CA, et al. Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 1992;12:2865–2874.

  • 162.

    Raber J, Mehta PP, Kreifeldt M, et al. Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 1997;68:176–186.

  • 163.

    Conners CK. Food additives and hyperactive children. New York: Plenum, 1980.

  • 164.

    Wolraich M, Wilson D, White W. The effect of sugar on behav- ior or cognition in children. JAMA 1995;274:1617–1621.

  • 165.

    Needleman HL. The neuropsychiatric implications of low level exposure to lead. Psychol Med 1982;12:461–463.

  • 166.

    Conners CK. Controlled trial of methylphenidate in preschool children with minimal brain dysfunction. Int J Ment Health 1975;4:61–74.

  • 167.

    Milberger S, Biederman J, Faraone S, et al. Pregnancy delivery and infancy complications and ADHD: issues of gene-environ- ment interactions. Biol Psychiatry 1997;41:65–75.

  • 168.

    Sprich-Buckminster S, Biederman J, Milberger S, et al. Are perinatal complications relevant to the manifestation of ADD? Issues of comorbidity and familiality. J Am Acad Child Adolesc Psychiatry 1993;32:1032–1037.

  • 169.

    Schmidt MH, Esser G, Allehoff W, et al. Evaluating the signifi- cance of minimal brain dysfunction: results of an epidemiologic study. J Child Psychol Psychiatry 1987;28:803–821.

  • 170.

    Hartsough CS, Lambert NM. Medical factors in hyperactive and normal children: prenatal, developmental, and health his- tory findings. Am J Orthopsychiatry 1985;55:191–201.

  • 171.

    Nichols PL, Chen TC. Minimal brain dysfunction: a prospective study. Hillsdale, NJ: Lawrence Erlbaum Associates, 1981.

Document info
Document views81
Page views81
Page last viewedMon Jan 23 11:14:06 UTC 2017