X hits on this document

# FORMATIVE EVALUATION OF ACADEMIC PROGRESS: - page 25 / 30

59 views

0 shares

25 / 30

TABLE 5 (Continued)

Number Scores

Slope (b) [a]

I

II

III

II

III

Problems

1

18

29.00

(2.57)

.50

( .49)

2

43

29.49

(1.67)

.14

( .09)

3

24

28.92

(2.92)

.31

( .15)

4

21

29.48

(2.62)

.34

( .13)

5

45

28.20

(3.80)

.20

( .09)

6

26

27.15

(3.91)

.09

( .08)

Distribution of Slopes

IV

V

VI

VII

VIII

IX

X

Digits

1

.46

(1.04)

.51

( .54)

.36

.74

0.0

2

.53

(  .71)

-  .42

( .36)

- .13

.48

7.0

3

-1.17

(  .92)

.11

( .47)

- .01

.88

4.2

4

.64

(  .97)

-  .92

( .50)

.05

1.29

0.0

5

2.38

(  .70)

1.13

( .35)

- .04

2.35

2.2

6

.17

(  .89)

.60

( .46)

- .15

1.40

7.7

Problems

1

3.19

(1.04)

1.11

( .54)

.27

2.43

0.0

2

.79

(  .71)

-  .32

( .36)

- .12

.36

7.0

3

-  .19

(  .92)

.27

( .47)

.06

.59

4.2

4

.64

(  .97)

-1.10

( .50)

.04

.50

0.0

5

-  .06

(  .70)

.60

( .35)

- .02

.48

2.2

6

.89

(  .89)

.64

( .46)

- .07

.28

7.7

[a] For digits, the one-way ANOVA for the effect of grade produced a significant F (5,171) value of 19.38, p < .001; the F (1,171) for the linear trend was 31.38, p < .001 and for the quadratic trend, F (1,170) = 1.34 ns. Student-Newman Keuls revealed that 2<3 = 6 = 1<4 = 5. For problems, ANOVA indicated a significant F (5,171) value of 14.93 p < .001; the F (1,171) for the linear trend was 31.88, p < .001 and for the quadratic trend, F (1,171) = .01, ns.  Student-Newman-Keuls revealed that 6 = 2<5<4 = 3<1.

25

 Document views 59 Page views 59 Page last viewed Wed Nov 30 16:49:21 UTC 2016 Pages 30 Paragraphs 1832 Words 12541