X hits on this document

1380 views

0 shares

0 downloads

0 comments

170 / 420

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

L'identification

nombre de cercles traçables, celui-là, en tant qu'il se bouclerait, je l'appellerai, simplement question de dénomination, cercle plein. Aucune hypothèse sur ce qui est de son intérieur, c'est une simple étiquette que je crois, mon Dieu, pas plus mauvaise qu'une autre, tout étant bien considéré. J'ai longuement balancé en en parlant avec mon fils, pourquoi ne pas le nommer, on pourrait appeler cela le cercle engendrant, mais Dieu sait où cela nous mènerait! Mais supposons donc que toute énonciation des méthodes que l'on appelle synthétique - parce qu'on s'étonne spécialement de ceci, quoiqu'on puisse les énoncer a priori, elles ont l'air, on ne sait pas où, on ne sait pas quoi, de contenir quelque chose, et c'est ce que l'on appelle intuition, et on cherche son fondement esthétique, transcen­dantal - supposons donc que toute énonciation synthétique, il y en a un cer­tain nombre au principe du sujet, et pour le constituer, eh bien!, se déroule selon un de ces cercles, dit cercle plein, et que c'est cela qui nous image le mieux ce qui, dans la boucle de cette énonciation, est série irréductible. Je ne vais pas me limi­ter à ce simple petit badinage, parce que j'aurai pu me contenter de prendre un cylindre infini, puis parce que si cela s'en tenait là, cela n'irait pas très loin. Métaphore intuitive, géométrique mettons. Chacun sait l'importance qu'a toute la bataille entre mathématiciens, elle ne fait rage qu'autour d'éléments de cette espèce. Poincaré et d'autres maintiennent qu'il y a un élément intuitif irréduc­tible, et toute l'école des axiomaticiens prétend que nous pouvons entièrement formaliser à partir d'axiomes, de définitions et d'éléments, tout le développe­ment des mathématiques, c'est-à-dire l'arracher à toute intuition topologique. Heureusement que monsieur Poincaré s'aperçoit très bien que la topologie, c'est bien là qu'on en trouve le suc de l'élément intuitif, et qu'on ne peut pas le résoudre et que, je dirai même plus, en-dehors de l'intuition on ne peut pas faire cette science qui s'appelle topologie, on ne peut pas commencer à l'articuler, parce que c'est une grande science.

Il y a de grosses vérités premières qui sont attachées autour de cette construc­tion du tore et je vais vous faire toucher du doigt quelque chose; sur une sphère ou sur un plan, vous savez qu'on peut dessiner n'importe quelle carte, si compli­quée soit-elle, qu'on appelle géographique, et qu'il suffit, pour colorier ses domaines d'une façon qui ne permette de confondre aucun avec son voisin, de quatre couleurs. Si vous trouvez une très bonne démonstration de cette vérité vraiment première, vous pourrez l'apporter à qui de droit parce qu'on vous décernera un prix, la démonstration n'étant pas encore à ce jour trouvée. Sur le tore, ce n'est pas expérimentalement que vous le verrez, mais cela se démontre, pour résoudre le même problème il faut sept couleurs. Autrement dit, sur le tore

- 170 -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
Document info
Document views1380
Page views1380
Page last viewedFri Jan 20 10:33:09 UTC 2017
Pages420
Paragraphs2090
Words174287

Comments