X hits on this document

1174 views

0 shares

0 downloads

0 comments

235 / 420

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

Leçon du 11 avril 1962

ne sont pas assurées par cette introduction, tout à fait décisive, et qui date de la distinction récente de la logique des relations d'avec la logique des classes, que c'est en somme pour nous tout à fait ailleurs que là où elle a trouvé son assiette que nous avons à définir le statut de la négation. C'est un rappel, un rappel des­tiné à vous éclairer rétrospectivement l'importance de ce que, depuis le début du discours de cette année,) e vous suggère concernant l'originalité primordiale, par rapport à cette distinction, de la fonction de la négation.

Vous voyez donc que ces cercles d'Euler, ce n'est pas Euler qui s'en est servi à cette fin; il a fallu depuis que s'introduise l'œuvre de Boole, puis de De Morgan pour que ceci soit pleine­ment articulé. Si j'en reviens à ces cercles d'Euler, ça n’est donc pas qu’il en fait lui-même si bon usage, mais c'est que c'est avec son maté­riel, avec l'usage de ses cercles qu'ont pu être faits les progrès qui ont suivi, et dont je vous donne à la fois l'un de ceux qui ne sont pas le moindre, ni le moindre notoire, en tout cas particulièrement saisissant, immédiat à faire sentir. Entre Euler et De Morgan, l'usage de ces cercles a permis une symbolisation qui est aussi utile qu'elle vous paraît du reste implicitement fondamentale, qui repose sur la position de ces cercles qui se structurent ainsi. C'est ce que nous appelle­rons deux cercles qui se recoupent, qui sont spécialement importants pour leur valeur intuitive qui paraîtra à chacun incontestable, si je vous fais remarquer que c'est autour de ces cercles que peuvent s'articuler d'abord deux relations qu'il convient de bien accentuer, qui sont celles, d'abord, de la réunion. Qu'il s'agisse de quoi que ce soit que j'ai énuméré tout à l'heure, leur réunion, c'est le fait qu'après l'opération de la réunion, ce qui est unifié ce sont ces deux champs. L'opération dite de la réunion, qui se symbolise ainsi ordinairement , c'est pré­cisément ce qui a introduit ce symbole, est, vous le voyez, quelque chose qui n'est pas tout à fait pareil à l'addition. C'est l'avantage de ces cercles de le faire sentir. Ce n'est pas la même chose que d'additionner par exemple deux cercles  235

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
Document info
Document views1174
Page views1174
Page last viewedSun Dec 11 05:04:56 UTC 2016
Pages420
Paragraphs2090
Words174287

Comments