X hits on this document

1534 views

0 shares

0 downloads

0 comments

343 / 420

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

Leçon du 6 juin 1995

est paradoxal et intéressant, c'est qu'en somme il ne s'agit ici que d'une seule coupure toujours et que néanmoins, à simplement lui faire faire deux fois le tour du point privilégié, vous divisez la surface.

Ce n'est pas du tout pareil sur un tore. Sur un tore, si vous faites autant de fois que vous voudrez le tour du trou central, vous n'obtiendrez jamais qu'un allongement en quelque sorte de la bande, mais vous ne la diviserez pas pour autant. Ceci pour vous faire remar­quer que nous touchons là, sans doute, quelque chose d'intéressant concernant la fonction de cette surface.

Il y a d'ailleurs quelque chose qui n'est pas moins intéressant, c'est que ce double tour, avec ce résultat, est quelque chose que vous ne pouvez pas répéter une seule fois de plus. Si vous faites un triple tour, vous serez amenés à dessiner sur la surface quelque chose qui se répétera indéfiniment, à la manière des boucles que vous opérez sur le tore quand vous vous livrez à l'opération de bobinage dont je vous ai parlé au départ, à ceci près qu'ici la ligne ne se rejoindra jamais, ne se mordra jamais la queue. La valeur privilégiée de ce double tour est donc suffisamment assurée par ces deux propriétés.

Considérons maintenant la surface qu'isole ce double tour sur le plan pro­jectif. Je vais vous en faire remarquer certaines propriétés. D'abord c'est ce que nous pouvons appeler une surface - appelons-la comme cela, pour la rapidité, entre nous si l'on peut dire, puisque je vais vous rappeler ce que cela veut dire - c'est une surface gauche, comme un corps gauche, comme n'importe quoi que nous pouvons définir comme cela dans l'espace. Je ne l'emploie pas pour l'opposer à droite, je l'emploie pour définir ceci, que vous devez bien connaître, c'est que si vous voulez définir l'enroulement d'un escargot, qui comme vous le savez est privilégié, dextrogyre ou lévogyre peu importe, cela dépend comment vous définissez l'un ou l'autre, cet enroulement, vous le trouverez le même, que vous regardiez l'escargot du côté de sa pointe ou que vous le retourniez pour le

-343-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
Document info
Document views1534
Page views1534
Page last viewedMon Jan 23 13:20:12 UTC 2017
Pages420
Paragraphs2090
Words174287

Comments