X hits on this document

201 views

0 shares

0 downloads

0 comments

57 / 92

Grounding is connecting an electrical system to the earth with a wire. Excess or stray current travels through this wire to a grounding device (commonly called a “ground”) deep in the earth. Grounding prevents unwanted voltage on electrical components. Metal plumbing is often used as a ground. When plumbing is used as a grounding conductor, it must also be connected to a grounding device such as a conductive rod. (Rods used for grounding must be driven at least 8 feet into the earth.) Sometimes an electrical system will receive a higher voltage than it is designed to handle. These high voltages may come from a lightning strike, line surge, or contact with a higher- voltage line. Sometimes a defect occurs in a device that allows exposed metal parts to become energized. Grounding will help protect the person working on a system, the system itself, and others using tools or operating equipment connected to the system. The extra current produced by the excess voltage travels relatively safely to the earth.

Grounding creates a path for currents produced by unintended voltages on exposed parts. These currents follow the grounding path, rather than passing through the body of someone who touches the energized equipment. However, if a grounding rod takes a direct hit from a lightning strike and is buried in sandy soil, the rod should be examined to make sure it will still function properly. The heat from a lightning strike can cause the sand to turn into glass, which is an insulator. A grounding rod must be in contact with damp soil to be effective.

Leakage current occurs when an electrical current escapes from its intended path. Leakages are sometimes low-current faults that can occur in all electrical equipment because of dirt, wear, damage, or moisture. A good grounding system should be able to carry off this leakage current. A ground fault occurs when current passes through the housing of an electrical device to ground. Proper grounding pro- tects against ground faults. Ground faults are usually caused by misuse of a tool or damage to its insulation. This damage allows a bare conductor to touch metal parts or the tool housing.

When you ground a tool or electrical system, you create a low-resis- tance path to the earth (known as a ground connection). When done properly, this path has sufficient current-carrying capacity to elimi- nate voltages that may cause a dangerous shock.

Grounding does not guarantee you will not receive a shock, be injured, or killed from defective equipment. However, it greatly reduces the possibility.

Section 7

Grounding rod in the earth.

Grounding-type receptacle.

Page 49

Document info
Document views201
Page views202
Page last viewedSun Dec 04 18:04:00 UTC 2016
Pages92
Paragraphs1342
Words27832

Comments