X hits on this document

PDF document

Modeling Intrusion Detection Systems Using Linear Genetic Programming Approach - page 4 / 10

25 views

0 shares

0 downloads

0 comments

4 / 10

3.1 Probing

Probing is a class of attacks where an attacker scans a network to gather information or find known vulnerabilities. An attacker with a map of machines and services that are available on a network can use the information to look for exploits. There are different types of probes: some of them abuse the computer’s legitimate features; some of them use social engineering techniques. This class of attacks is the most commonly heard and requires very little technical expertise.

3.2

Denial of Service Attacks

Denial of Service (DoS) is a class of attacks where an attacker makes some computing or memory resource too busy or too full to handle legitimate requests, thus denying legitimate users access to a machine. There are different ways to launch DoS attacks: by abusing the computers legitimate features; by targeting the implementations bugs; or by exploiting the system’s misconfigurations. DoS attacks are classified based on the services that an attacker renders unavailable to legitimate users.

3.3

User to Root Attacks

User to root (U2Su) exploits are a class of attacks where an attacker starts out with access to a normal user account on the system and is able to exploit vulnerability to gain root access to the system. Most common exploits in this class of attacks are regular buffer overflows, which are caused by regular programming mistakes and environment assumptions.

3.4 Remote to User Attacks

A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a machine over a network, then exploits machine’s vulnerability to illegally gain local access as a user. There are different types of R2U attacks; the most common attack in this class is done using social engineering.

4 Experiments

In our experiments, we perform 5-class classification. The (training and testing) data set contains 11982 randomly generated points from the data set representing the five classes, with the number of data from each class proportional to its size, except that the smallest class is completely included. The set of 5092 training data and 6890 testing data are divided in to five classes: normal, probe, denial of service attacks, user to super user and remote to local attacks. Where the attack is a collection of 22 different types of instances that belong to the four classes described in section 3, and the other is the normal, and the other is the normal data. The normal data belongs to class1, probe belongs to class 2, denial of service belongs to class 3, user to super user belongs to class 4, remote to local belongs to class 5. Note two randomly generated separate data sets of sizes 5092 and 6890 are used for training and testing the LGPs, SVMs, and RBP respectively. Same training and test datasets were used for all the

Document info
Document views25
Page views25
Page last viewedFri Dec 02 19:00:35 UTC 2016
Pages10
Paragraphs417
Words4082

Comments