X hits on this document

Word document

НАНОТЕХНОЛОГИЯ И ВКЛЮЧЕНИЕ АТОМОВ ДЕЙТЕРИЯ 2H, УГЛЕРОДА 13C, - page 3 / 24

51 views

0 shares

0 downloads

0 comments

3 / 24

дейтерия, углерода 13С, азота 15N, кислорода 18O с соответствующим уровнем изотопной чистоты. Так, для синтеза [2Н]-, [15N]- и [18О]аминокислот используют тяжёлую воду 2Н2О , дейтероводород 2H2, дейтерохлористоводородную кислоту 2НCl; LiAl2H4; B22H6 ; 15NH3 ; Na15NH2 ; 15NH2Cl, 18H2O и др. (более подробно о методах получения [2H]-и [15N]аминокислот см. обзоры [29, 30]).

Особую ценность для многих исследований имеют молекулы [13С]аминокислот, которые получают за счёт карбоксилирования соответствующих органических соединений с помощью 13СO2 и Ni(13СCO)4 по связи углерод-водород или углерод-металл с последующим гидролизом.

Перспективные синтетические подходы по включению атомов углерода 13С в различные положения молекул, включая карбоксильные СООН- и Сa- положения, продемонстрированы в работах [31-36], а также описан стереоселективный синтез молекул [13С]аминокислот [37-39]. Несмотря на это, химические синтезы многостадийны, требуют больших расходов ценных реагентов и меченых субстратов и приводят в результате к продукту, представляющему собой рацемическую смесь D- и L-форм молекул аминокислот, для разделения которых требуются специальные методы [40].

Недостатком химического синтеза является то, что он приводит к синтезу молекул [13С]аминокислот, у которых атомы углерода 13С локализуются по карбоксильным СООН-положениям молекул. Это существенно ограничивает использование данных [13С]аминокислот для биологических исследований вследствие возможной потери изотопной метки углерода 13С за счёт функционирования многочисленных реакций ферментативного декарбоксилирования, происходящих в организме [41]. Разработанные за последние годы синтетические методы введения атома углерода 13С в молекулы аминокислот затрагивают такие положения углеродных атомов в молекулах аминокислот, как метильная группа метионина [42], С2- положение в имидазольном кольце молекулы гистидина [43], а также атомы углерода при карбоксильных СООН- группах аспарагиновой [44], и глутаминовой кислот [45].

Более тонкие способы включения атомов стабильных изотопов в молекулы аминокислот связаны с использованием комбинации химических и ферментативных подходов. Так, L-[4-13С]валин, L-[3-13С]триптофан и другие L-[13С]аминокислоты, были синтезированы с использованинем ферментов [46] (более подробно о химико-ферментативных подходах по синтезу изотопномеченых аминокислот см ниже).

Изотопный (1Н-2Н)- и (16О-18O)-обмен в молекулах аминокислот и белков.

Эффективным подходом для включения атомов дейтерия в молекулы аминокислот является селективное замещение определённых легко обмениваемых на дейтерий ароматических протонов в бензольном кольце молекул фенилаланина и тирозина, в индольном кольце триптофана и в имидазольном кольце гистидина, как в виде индивидуальных молекул аминокислот, так и в составе аминокислотных остатков в белках [47, 48].

Реакция изотопного (1Н-2Н)-обмена протекает по механизму электрофильного замещения и затрагивает определённые, наиболее чувствительные к замещению протоны в молекулах ароматических аминокислот. Этим методом могут быть получены в граммовых количествах L-[2,3,4,5,6-2Н]фенилаланин в 85% 2H2SO4 при 500 C, L-[3,5- 2H]тирозин в 6 н. 2H2SO4 при слабом кипячении раствора, L-[2,4,5,6,7-2H]триптофан в 75% [2H]трифторуксусной кислоте при 250 С и L-[2-2H]гистидин в 6 н. NaO2H при 800 С.

Document info
Document views51
Page views51
Page last viewedMon Dec 05 07:13:27 UTC 2016
Pages24
Paragraphs266
Words9831

Comments