X hits on this document





14 / 15

Biotechnology Journal

[25] Van Dyk, D., Hansson, G. R., Pretorius, I. S. Bauer, F. F., RME1 regulates the switch between sporulation and pseudophy- phal differentiation. Genetics 2003, 165, 1045–1058. [26] Van Dyk, D., Pretorius, I. S., Bauer, F. F., Mss11p is a central element of the regulatory network that controls FLO11 ex- pression and invasive growth in Saccharomyces cerevisiae. Genetics 2005, 169, 91–106. [27] Bester, M. C., Pretorius, I. S., Bauer, F. F., The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+- dependent flocculation by Flo8p and Mss11p. Curr. Genet. 2006, 49, 375–383. [28] Bayly, J. C., Douglas, L. M., Pretorius, I. S., Bauer, F. F., Drangi- nis, A. M., Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5, 1151–1156. [29] Bauer, F. F., I. S. Pretorius., Yeast stress response and fer- mentation efficiency: How to survive the making of wine. S. Afr. J. Enol.Viticult. 2000, 21, 27–51. [30] Lambrechts, M. G., Pretorius, I. S., Marmur, J., Sollitti, P.,The S1, S2 and SGA1 ancestral genes for the STA glucoamylase genes all map to chromosome IX in Saccharomyces cerevisi- ae. Yeast 1995, 11, 783–787. [31] Vivier, M. A., Lambrechts, M. G., Pretorius, I. S., Co-regula- tion of starch-degradation and dimorphism in the yeast Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 1997, 32, 405–435. [32] Berthels, N. J., Cordero Otero, R. R., Bauer, F. F., Thevelein, J. M., Pretorius, I. S., Discrepancy in glucose and fructose util- isation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004, 4, 683–689. [33] Berthels, N. J., Cordero Otero, R. R., Bauer, F. F., Pretorius, I. S., Thevelein, J. M., Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl. Microbi- ol. Biotechnol. 2008, 77, 1083–1089. [34] Lilly, M., Bauer, F. F., Styger, G., Lambrechts, M. G., Pretorius I. S., The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res. 2006, 6, 726–743. [35] Lilly, M., Bauer, F. F., Lambrechts, M. G., Swiegers, J. H. et al., The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distil- lates. Yeast 2006, 23, 641–665. [36] Franken, J., Kroppenstedt, S., Swiegers, J. H., Bauer F. F., Car- nitine and carnitine acetyltransferases in the yeast Saccha- romyces cerevisiae: A role for carnitine in stress protection. Curr. Genet. 2008, 53, 347–360. [37] Swiegers, J. H., Vaz, F. M., Pretorius, I. S., Wanders, R. J. A., Bauer F. F., Carnitine biosynthesis in Neurospora crassa: Identification of a cDNA coding for ε-N-trimethyllysine hy- droxylase and its functional expression in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2002, 210, 19–23. [38] Bauer, F. F., Dequin, S., Pretorius, I. S., Shoeman, H. et al.,The assessment of the environmental impact of genetically modified wine yeast strains. Bull. O.I.V. 2004, 77, 515–528. [39] Malherbe, D. F., du Toit, M., Cordero Otero, R. R., van Rens- burg, P. Pretorius, I. S., Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl. Microbiol. Biotechnol. 2003, 61, 502–511. [40] Divol, B., van Rensburg, P., PGUI gene natural deletion is re- sponsible for the absence of endopolygalacturonase activi-


© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Biotechnol. J. 2008, 3, 1355–1367

ty in some wine strains of Saccharomyces cerevisiae. FEMS Yeast Res. 2007, 7, 1328–1339. [41] Lambrechts, M. G., Pretorius, I. S., Yeast and its importance to wine aroma. S. Afr. J. Enol.Viticult. 2000. 21, 97–129. [42] Smit, A., Cordero Otero, R. R., Lambrechts, M. G., Pretorius, I. S. et al., Manipulation of volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. J. Agric. Food Chem. 2003, 51, 4909–4915. [43] Van Rensburg, P., Stidwell, T., Lambrechts, M. G., Cordero Otero, R. R. et al., Development and assessment of a recom- binant Saccharomyces cerevisiae wine yeast producing two aroma-enhancing β-glucosidase encoded by the Saccha- romycopsis fibuligera BGL1 and BGL2 genes. Ann. Microbi- ol. 2005, 55, 33–42. [44] Verstrepen, K. J., Moonjai, N., Bauer, F. F., Derdelinckx, G. et al., Genetic Regulation of ester synthesis in yeast: New facts, insights and implications for the brewer, in: Smart, K. (Ed.), Brewing Yeast Fermentation Performance, 2nd edn. Blackwell Science, Oxford 2003, pp. 234–248. [45] Becker, J. V. W., Armstrong, G. O., van der Merwe, M. J., Lam- brechts, M. G. et al., Metabolic engineering of Saccha- romyces cerevisiae for the synthesis of the wine-related an- tioxidant resveratrol. FEMS Yeast Res. 2003, 4, 79–85. [46] Du Toit, M., Pretorius, I. S., Microbial spoilage and preser- vation of wine: Using weapons for nature’s own arsenal. S. Afr. J. Enol.Viticult. 2000, 21, 74–96. [47] Schoeman, H., Vivier, M. A., du Toit, M., Dicks, L. M. T. et al., The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccha- romyces cerevisiae. Yeast 1999. 15, 647–656. [48] Du Plessis, H. W., Steger, C. L. C., du Toit, M. et al., The oc- currence of malolactic fermentation in brandy base wine and its influence on brandy quality. J. Appl. Microbiol. 2002, 92, 1005–1013. [49] Knoll, C., Divol, B., du Toit, M., Genetic screening of lactic acid bacteria of oenological origin for bacteriocin encoding genes. Food Microbiol. 2008, in press. [50] Du Toit, M., du Toit, C., Krieling, S. J. Pretorius, I. S., Biop- reservation of wine with antimicrobial peptides. Bull. O.I.V. 2002, 75, 284–302. [51] Mtshali, P. S., Screening and characterization of wine-relat- ed enzymes produced by wine-associated lactic acid bacte- ria. MSc thesis, Stellenbosch University, South Africa, 2007. [52] Nelson, L., Investigating the influence of lactic acid bacteria and Saccharomyces cerevisiae on the production of volatile phenols by Brettanomyces. MSc thesis, Stellenbosch Uni- versity, South Africa, 2008. [53] Du Toit, M., Vivier, M. A., van Rensburg, P., Biopreservation and increasing the wholesomeness of wine. Lallemand Tech- nical Brochure “Beverages, Ferment. Health 2003, 11, 27–32. [54] Du Toit, M., Vivier, M. A., van Rensburg, P., Enhancing the wholesomeness of wine. Food Rev. 2006, 33, 25–26. [55] Smit, A. Y., Evaluating the influence of winemaking prac- tices on biogenic amine production. MScAgric thesis, Stel- lenbosch University, South Africa, 2007. [56] Krieling, S. J., An investigation into lactic acid bacteria as a possible cause of bitterness in wine. MSc thesis, Stellen- bosch University, South Africa, 2003. [57] Nieuwoudt, H. H., Prior, B. A., Pretorius, I. S., Bauer, F. F., Glycerol in South African table wines: An assessment of its contribution to wine quality. S. Afr. J. Enol. Viticult. 2002. 23, 22–30.

Document info
Document views53
Page views53
Page last viewedSun Jan 22 14:50:10 UTC 2017