X hits on this document

# Fuentes’ LAB NOTES: - page 8 / 12

50 views

0 shares

8 / 12

############################################################

##EXERCISE 2: Moving neighborhood  kriging

###"Kriging performed in global neighborhood":

#      cov.pars : covariance parameters vector (partial sill,range)

#      m0 : defines the type of kriging:

#                                 'sk': simple kriging (no trend)

#                                'ok': ordinary kriging (constant trend)

#                                'kt': kriging with a trend model(universal)

#      kappa : kappa (smoothing) is the smoothing

# parameter for Matern or powered exponential covariance function

coal.k<-ksline(coords=coal.m[,2:3],data=coal.m[,4],locations=loci,

cov.pars=c(3,1),nugget=0,

cov.model="matern",

kappa=.5,m0="ok")

##coal.k

coal.k\$predict

[1] 10.07305 11.22320

coal.k\$krige.var

[1] 2.684456 1.349229

coal.k\$beta

[,1]

[1,] 9.752618

coal.k\$message:

[1] "Kriging performed in global neighborhood"

##Universal Kriging:

#

# the value of trend here is 2 which means we have a polynomial

# of degree 2 for a two dimensional problem, therefore

# we need to estimate 5 parameters

coal.uk<-ksline(coords=coal.m[,2:3],data=coal.m[,4],locations=loci,

cov.pars=c(3,1),nugget=0,

cov.model="matern",

kappa=.5,m0="kt",trend=2)

coal.uk\$predict

[1] 10.77988 11.24153

coal.uk\$krige.var

[1] 3.023352 1.349461

coal.uk\$beta

coefficients:

[1,]  1.124853e+01   (1)

[2,] -2.090557e-01   (x)

 Document views 50 Page views 54 Page last viewed Sun Dec 11 08:28:56 UTC 2016 Pages 12 Paragraphs 458 Words 1924