X hits on this document

PDF document

Spontaneous Imbalance and Hybrid Vortex–Gravity Structures - page 11 / 12





11 / 12

MAY 2009



recent insights into the mathematical issues, which in diffusive versions of these problems involve the ex- tremely smooth behavior known as Gevrey regularity.


Badulin, S. I., and V. I. Shrira, 1993: On the irreversibility of internal- wave dynamics due to wave trapping by mean flow inhomoge- neities. Part 1. Local analysis. J. Fluid Mech., 251, 21–53. Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Uni- versity Press, Cambridge, 615 pp. Billant, P., and J.-M. Chomaz, 2000: Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid. J. Fluid Mech., 419, 65–91. B ¨uhler, O., and M. E. McIntyre, 2005: Wave capture and wave– vortex duality. J. Fluid Mech., 534, 67–95. Dritschel, D. G., and M. de la Torre Jua´rez, 1996: The instability and breakdown of tall columnar vortices in a quasi-geo- strophic fluid. J. Fluid Mech., 328, 129–160. Errico, R. M., 1982: Normal mode initialization and the generation of gravity waves by quasigeostrophic forcing. J. Atmos. Sci., 39, 573–586. Ford, R., 1994: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280, 303–334.

  • ——

    , M. E. McIntyre, and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 1236–1254.

  • ——

    , ——, and ——, 2002: Reply. J. Atmos. Sci., 59, 2878–2882.

Hakim, G. J., 2008: A probabilistic theory for balance dynamics. J. Atmos. Sci., 65, 2949–2960. Haynes, P. H., and J. Anglade, 1997: The vertical-scale cascade of atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54, 1121–1136. Hoskins, B. J., 1975: The geostrophic momentum approxima- tion and the semi-geostrophic equations. J. Atmos. Sci., 32, 233–242. Jones, W. L., 1969: Ray tracing for internal gravity waves. J. Geo- phys. Res., 74, 2028–2033. Koch, S. E., and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 2570– 2592. Lighthill, M. J., 1952: On sound generated aerodynamically. I. General theory. Proc. Roy. Soc. London, 211A, 564–587.

  • ——

    , 1963: Boundary layer theory. Laminar Boundary Layers, L.

Rosenhead, Ed., Oxford University Press, 46–113. McIntyre, M. E., 1997: Lucidity and science. I: Writing skills and the pattern perception hypothesis. Interdiscip. Sci. Rev., 22, 199–216.

  • ——

    , 2001: Rupert Ford (obituary). Quart. J. Roy. Meteor. Soc., 127, 1489–1490.

  • ——

    , 2003: Potential vorticity. Encyclopedia of Atmospheric Sci- ences,Vol. 2, J. R. Holton, J. A. Pyle, and J. A. Curry, Eds., Elsevier, 685–694. [Available online at www.atm.damtp.cam. ac.uk/people/mem/papers/ENCYC/.]

  • ——

    , 2008: Potential-vorticity inversion and the wave-turbulence jigsaw: Some recent clarifications. Adv. Geosci., 15, 47–56.

  • ——

    , and W. A. Norton, 1990: Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech., 212, 403–435; Corrigendum, 220, 693.

  • ——

    , and ——, 2000: Potential vorticity inversion on a hemi-

sphere. J. Atmos. Sci., 57, 1214–1235; Corrigendum, 58, 949. Methven, J., E. Heifetz, B. J. Hoskins, and C. H. Bishop, 2005: The counter-propagating Rossby-wave perspective on baroclinic instability. Part III: Primitive-equation distur- bances on the sphere. Quart. J. Roy. Meteor. Soc., 131, 1393–1424. Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185–204. Miyazaki, T., and Y. Fukumoto, 1992: Three-dimensional insta- bility of strained vortices in a stably stratified fluid. Phys. Fluids, A4, 2515–2522. Mohebalhojeh, A. R., and M. E. McIntyre, 2007a: Local mass conservation and velocity splitting in PV-based balanced models. Part I: The hyperbalance equations. J. Atmos. Sci., 64, 1782–1793.

  • ——

    , and ——, 2007b: Local mass conservation and velocity splitting in PV-based balanced models. Part II: Numerical results. J. Atmos. Sci., 64, 1794–1810.

Norton, W. A., 1988: Balance and potential vorticity inversion in atmospheric dynamics. Ph.D. thesis, University of Cambridge, 167 pp. Nycander, J., D. G. Dritschel, and G. G. Sutyrin, 1993: The dy- namics of long frontal waves in the shallow water equations. Phys. Fluids, 5, 1089–1091.

´ Olafsdo´ ttir, E. I., A. B. Olde Daalhuis, and J. Vanneste, 2008:

Inertia–gravity-wave radiation by a sheared vortex. J. Fluid Mech., 596, 169–189. O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia– gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 3695–3716. Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730. Rossby, C.-G., 1936: Dynamics of steady ocean currents in the light of experimental fluid mechanics. Pap. Phys. Oceanogr. Me- teor., 5, 1–43.

  • ——

    , 1940: Planetary flow patterns in the atmosphere. Quart. J.

Roy. Meteor. Soc., 66 (Suppl.), 68–87. Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dy- namics near and following frontal collapse. J. Atmos. Sci., 50, 3194–3212.

  • ——

    , D. J. Muraki, R. Plougonven, and F. Zhang, 2007: Inertia- gravity waves generated within a dipole vortex. J. Atmos. Sci., 64, 4417–4431.

Taylor, G. I., 1931: Effect of variation in density on the stability of superposed streams of fluid. Proc. Roy. Soc. London, 132A, 499–523. Temam, R., and D. Wirosoetisno, 2007: Exponential approxima- tions for the primitive equations of the ocean. Discrete Contin. Dyn. Syst., 7B, 425–440. Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17–55. Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia– gravity waves and the breakdown of quasigeostrophic bal- ance. J. Atmos. Sci., 61, 211–223. Van Tuyl, A. H., and J. A. Young, 1982: Numerical simulation of nonlinear jet streak adjustment. Mon. Wea. Rev., 110, 2038– 2054.

´ Viu´ dez, A., 2001: The relation between Beltrami’s material vor-

ticity and Rossby–Ertel’s potential vorticity. J. Atmos. Sci., 58, 2509–2517.

Document info
Document views22
Page views22
Page last viewedSat Oct 22 18:45:38 UTC 2016